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Abstract. We show that a class of even and odd nonlinear coherent states, defined as the
eigenstates of the product of a nonlinear function of the number operator and the square of the
boson annihilation operator, can be generated in the centre-of-mass motion of a trapped and
bichromatically laser-driven ion. The nonclasscial properties of the states are studied.

1. Introduction

Coherent states are important in many fields of physics [1,2]. Coherent giateefined
as the eigenstates of the harmonic oscillator annihilation opedatde) = ala) [3], have
statistical properties like the classical radiation field. In a harmonic oscillator potential the
centre of the coherent state wavepacket follows the classical trajectory. There exist states
of the electromagnetic field whose properties, such as squeezing, higher-order squeezing,
antibunching and sub-Poissonian statistics [4, 5], are strictly quantum mechanical in nature.
These states are called nonclassical states. A special feature of the coherent states is that they
are the only pure states which are classical. All the other pure states of the electromagnetic
field are nonclassical.

A generalization of the coherent states was performedgfeforming the basic
commutation relationd, a'] = 1 [6,7]. A further generalization is to define states that
are eigenstates of the operajtii)a,

falf, a)=alf a) 1)

wheref (7) is an operator-valued function of the number operatera'a. These eigenstates

are called nonlinear coherent states (NCS). In the linear lifiiit) = 1, the NCS become the
usual coherent statés). The NCS were introduced, gscoherent states, in connection with

the study of an oscillator whose frequency depends on its energy [8,9]. A class of NCS can be
realized physically as the stationary states of the centre-of-mass motion of a trapped ion [10]
and exhibit nonclassical features such as squeezing and self-splitting.

Superposition of coherent states gives rise to states with nonclassical properties. An
important case is the superposition of the coherent stateand |—«), where the resultant
states are eigenstates of the operatdf.1]. The symmetric combination is the even coherent
state (ECS)|e, +), and its number state expansion is

O[211

j, +) = [coshla ]2 " 2
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The antisymmetric combination is the odd coherent state (O@S),), given by
2n+1

N\ o 21-1/2 o o
o, —) = [sinh|a|?] Z‘; —mm +1). (3)
The ECS has a squeezing effect but no antibunching effect. The OCS has an antibunching
effect but no squeezing effect [12,13]. Both the ECS and OCS have oscillatory photon
number distribution. These states can be generated by various schemes: propagation
in Kerr medium [14, 15], micromaser cavity experiments [16], quantum nondemolition
experiments [17] and the motion of a trapped ion [18]. The ECS and OCS can be interpreted
as Schadinger cat states for appropriately large values §f4].

The notion of the ECS and OCS has been generalized to the case of NCS [19, 20]. The
even and odd nonlinear coherent states (ENCS and ONCS, respectively) are defined as the
eigenstates of the operatBi)a?, whereF (i) is an operator-valued function of the number
operatom. We denote the eigenstates|asF), and they satisfy

F(@)a®|a, F) = ala, F) (4)
wherewx is complex. The above equation gives rise to the recurrence relation
, F
(n+2a, F) =« {nle F) (5)
F(n)y/(n+1)(n+2)

forn =0,1, 2, 3..., where the functiorF (n) is obtained by replacing the number operaitor

in F(n) by theintegen. The complex numbera+2|a, F) (n =0, 1, 2, ...) are the expansion
coefficients of the stater, F') in the harmonic oscillator basis. The above recurrence relation
between the expansion coefficients yields

n Ola, F)
nle. B = o T ©
(2n + 1, F) = o (Lo, F) @)
’ F@2n — DI /@n + D)
where FQn — ) = FOFQF@)...FQn — 1) and F2n — DI =

F(OHFQR)F((5)... F(2n—1). The functionF (k)!! is set equal to unity if the argumehis less

than or equal to zero. The above relations yields all the coefficients], 2, 3. .., in terms

of (Ola, F) and (1]a, F). The coefficientg0|«, F) and (1|«, F) are fixed by normalizing

the statele, F). If we choose(lja, F) = O, the statdu, F) involves the superposition of

even number (Fock) states and represents the ENG8|df F) = 0, the statde, F), the
superposition of odd number states, is the ONCS. We denote the EN@SHAs+), and the

ONCS ag|a, F, —). In the linear limit, F(n) = 1, the ENCS and ONCS become the ECS
and the OCS, respectively. Depending on the forni 6f) the ENCS and ONCS may exhibit
many of the nonclassical features. It is interesting to note that the squeezed vacuum and the
squeezed first excited state of the harmonic oscillator can be interpreted as the ENCS and
ONCS, respectively. The squeezed vacuum is the ENCS Wiign= 1/(1 +a'a), and the
squeezed first excited state is the ONCS i) = 1/(2 +a'a). In this paper we show that

a class of ENCS and ONCS can be generated by the interaction of a harmonically trapped,
two-level atom with two externtal laser fields of suitable frequency.

2. Description of the atom—field system

One of the interesting systems in quantum optics is the harmonically trapped and laser-driven
ion wherein the interaction between the ion and the laser has nonfirdgendence. This
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system has been studied in very many contexts: NCS [10], the vibronic Jaynes—Cummings
interaction [21], the nonlinear Jaynes—Cummings interaction [22], the generation of even
and odd coherent states [18], quantum signatures of chaos [23], quantum nondemolition
measurements [24], quantum logic operations [25], engineering of Hamiltonians [26] and
generation of ampltiude-squared squeezed states [27]. In this paper we show that a class of
ENCS and ONCS can be generated in the centre-of-mass motion of a harmonically trapped
ion via bichromatic laser excitation. We also study the nonclassical properties of the states
produced.

We consider a single ion, having an electronic transition frequen@and a lower
(second) vibrational sideband with respect to that frequency, trapped in a harmonic potential of
frequencyv. Two laser fields, tuned, repectively,doand the vibrational sideband transition
frequency, interact with the ion. The Hamiltonian of this system in the optical rotating-wave
approximation can be written as [18]

H = Ho+ Hin(t) (8)
with
Ho = hva'a + hwéoy. 9

The free-Hamiltonianf, describes the free motion of the internal and external degrees of
freedom and the interaction Hamiltoniéf:,

Hin(1) = [ Eog 0ot 4 yel i tai=@=20l150, 4 Hec, (10)
describes the interaction of the ion with the two laser fields. The opedajdis j = 1, 2) are
the electronic flip operators corresponding to the transjtipr~ |i), anda is the annihilation
operator for the vibrational motion of the ion in the harmonic potential. The constant
the electronic coupling matrix element akg] k; are the wavevectors of the laser fields. The
operator of the centre-of-mass position of the ion is

t= L@a+ah (11)

kr
wheren is the Lamb—Dicke parameter akg >~ ko =~ k; is the wavevector of the driving laser
field.
Inthe interaction picture, defined by the unitary transformatiomeﬂ%l), the interaction
Hamiltonian becomes

. iHot \ ~ i Hot
Hyy = exp(-%) Hint exp(TO) (12)
o (i)™
=hQ exp(—nz/z)alz[ Z L gkt atkgl
k!
k,1=0
(”]) |(kl)ut&Tk&l] +H.c (13)
Qlk! A kI

where; = T’ (i = 1, 2) denotes the Rabi frequency of the two laser fields tuned to the

electronic transition and the second sideband, respectively. Inthe rotating-wave approximation,
neglecting terms rotating with frequenciesr greater, the interaction picture Hamiltonian
becomes

H), = Qi exp(—n?/2)621F +H.c. (14)
with
00 00 i N2k
(im>* atkpke? & ™ otk s
Zkl(k+2)l QIZ 2 ¢4 (15)

k= k=0
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3. Time evolution of the atom—field system

The time evolution of the system is governed by the master equation for the vibronic density
operatorp,
d . N A P,
Gl = —ﬁ[Him, p]+ 5(2012,0 021 — 0220 — £022) (16)

where the second term is introduced to include the effect of spontaneous emission from the
excited elctronic state with energy relaxation rBteand

1
=3 f dyW ()€ @20 perint@is (7
-1

accounts for changes in the vibrational energy due to spontaneous emiggipngives the
angular distribution of spontaneous emission. The steady state sghytidrequation (16) is
obtained by setting’;ﬁ = 0. The steady state attained depends on the initial state of the system.
Itis important to note that the master equation includes the effect of electronic damping while
the vibronic damping is taken to be negligible. This, in turn, would imply that the electronic
part of the steady state solution contains only the ground state. To solpg fee make the
ansatz thap; is given by

bs = 1DI&) (I (18)
where|1) is the electronic ground state aftd is the vibrational state of the ion, then the state
|¢) obeys

Flcy =0. (19)
Using F given by (15) we get

Qo (n+Dn+2LIn?)

Qun? Vi + D(n +2)L2(n?)
whereL”" is an associated Laguerre polynomial defined by

n N
L"(x) = Z(’;*_”l‘) ( lf) . 1)

=0

(n+22) = (n]¢) (20)

The numbergn + 2|¢) are the expansion coefficients for the stgtein the Fock states basis.
Comparing with (5) indicates that the st#gé is an ENCS or ONCS with
Qo
- 22
= o (22)
and
F(n) = LE0)[(n + D + DL ()] (23)

In the limit  — O the functionF (n) become% for all n. Hence in the smali limit the
ENCS and ONCS become the ECS and OCS, respectively.

4. Properties of the ENCS and ONCS

If the initial state of the ion is a combination of even (odd) number states then the state of
the system at later times will only involve a superposition of even (odd) number states as the
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Figure 1. Uncertaintys, (p2) — (p)2, in p as a function of- for g—‘l) = 0.001 (solid curve) and

g—‘; = 0.0001 (dashed curve) for the stadée F, +). r represents reaj.

master equation (16) contains only even poweafda®. If the initial state of the ion is the
vacuum state then the stationary state of the system is given by

o 00 |2

[e’e} 1
N; VE@OTF(2n — 2)N [2n) N = Z (2n)!(F(2n — 2)!1)2

n=0

|, F,+) = (24)

wherex andF (n) are defined by equations (22) and (23), respectively. This state is the ENCS
for the vibrational motion of the centre-of-mass of the ion in the harmonic potential. The
behaviour of the expansion coefficieftsa, F, +) is highly oscillatory becoming zero for odd
n. This oscillatory behaviour is one of the nonclassical features.

The ECS exhibits squeezing in tequadrature which is defined ag&l — a)/+/2. For
the ENCS the expectation valuesiofinda® become zero and the uncertaintyyitis given by

(Bp)°) = (P*) — (p)? (25)
= 3[1 +2(a"a) — 2(a%)] (26)

where the expansion coefficients of the ENCS in the harmonic oscillator basis are taken to be
real. In figure 1 we have shown the uncertaintyias a function of; for the states defined
by (24). From figure 1 it is clear that the uncertaintypitis less than that of the vacuum state
value of 0.5 indicating that the states exhibit squeezingn Agreases the uncertainty
approaches that of the vacuum state. The reason for this behaviour is the following. As
increases the occupation number distributian) = |(n|a, F, +)|? starts peaking near= 0.
To make this explicit we have shown in figure 2 the occupation number distribptionas a
function ofn for various values of.

The occupation number distribution for the ECS is always super-Poissonian, that is
variance ina is larger than its mean. A state is said to exhibit sub-Poissonian statistics if
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Figure 2. Occupation number distribution(n) as a function of: for the statéa, F, +) for various
n values an(% = 0.0001. @) » = 0.008, p) » = 0.012, €) n = 0.02, and ¢) = 0.1.

theq parameter [28], defined as
(%) — (7)?
(i)

is negative. Negativg indicates that the state is nonclassical. For the coherent gtetesro.
For the ENCS of (24) the ditributiop(n) can have negative for suitable values off ando.
In figure 3 we have shown the variationgfvith respect to the Lamb-Dicke parameiefior
two different values o&. It is evident that the ENCS can have features that are absent in the
ECS.

If the initial state of the ion is the first excited state of the harmonic trap then the state of
the system at later times will involve only odd number states. The resultant stationary state of
the system is an ONCS given by

~1 (27)

n

| F—)—Ni o
T T L e D - D

|2n + 1)

- ol (28)

-1 _
" X::o (2n+ DI(F(2n — N2

whereF (n) anda are again defined by equations (23) and (22), respectively. As in the case
of ENCS the behaviour of the occupation number distribution of the ONCS, equation (28), is
oscillatory becoming zero for even The occupation number distributigr(n) of the ONCS

is sub-Poissonian. Figure 4 shows thparameter as a function affor the ONCS of (28).

It is clear that the states are sub-Poissonian. It is interesting to note thav#hege for large
valuesn approaches the value of that of the first excited state of the harmonic oscillator. The
reason being that the occupation number distribution becomes concentrated atasn
increases.
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Figure 3. Mandel'sq parameter as a function of The solid curve corresponds éo= 1.0 and
the dashed curve @ = 2.0.
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Figure 5. Position basis wavefunction corresponding to the gtaté’, +) of (24) witha = 2.0.
(@ n =0.0, () n =0.15, c) n = 0.30 and @) » = 0.50. The dashed curves correspond to the
ECS and are the same as came (

Itis interesting to see how good the ENCS is in approximating the Schrodinger cat states.
We have plotted the wavefunction of the ENCS in figure 5. Itis seen that the ENCS is indeed
close to the ECS, which is a cat state. The aprroximation becomes poorer as the value of
increases. A similar trend is found in the case of the ONCS too. They approximate the OCS
for small values of;. So far we have discussed the steady state resulting from the evolution of
an initially pure state. Since the vibronic damping is neglected, the problem of decoherence
does not arise. Nevertheless, it is possible to assume that the system evolves from an initially
mixed state for the vibronic part. In such a case the steady state solution is

ps = WelDla, F, +){a, F, +|(1| + W,|Dev, F, =) (e, F, —|(1]. (29)

HereW, andW, are weights of the even and odd number states in the initial state.

5. Summary

In conclusion, we have shown that a class of ENCS and ONCS can be generated in the centre-
of-mass motion of a trapped and bichromatically laser driven ion. These ENCS and ONCS are
nonclassical. The ENCS exhibits squeezing while the ONCS exhibits sub-Poissonian statistics.
Both the ENCS and ONCS have an oscillatory occupation number distribution. The ENCS
exhibits sub-Poissonian statistics for suitable values of the parametearcky while the ECS

is always super-Poissonian. For small valueg tife ENCS and ONCS are very close to the
ECS and OCS, respectively. It is the occurence of the two physical parametedsr that

helps in manoeuvring the coefficients so that the resultant states have properties very different
from those of the ECS and the OCS.
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