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Abstract. We show that a class of even and odd nonlinear coherent states, defined as the
eigenstates of the product of a nonlinear function of the number operator and the square of the
boson annihilation operator, can be generated in the centre-of-mass motion of a trapped and
bichromatically laser-driven ion. The nonclasscial properties of the states are studied.

1. Introduction

Coherent states are important in many fields of physics [1, 2]. Coherent states|α〉, defined
as the eigenstates of the harmonic oscillator annihilation operatorâ, â|α〉 = α|α〉 [3], have
statistical properties like the classical radiation field. In a harmonic oscillator potential the
centre of the coherent state wavepacket follows the classical trajectory. There exist states
of the electromagnetic field whose properties, such as squeezing, higher-order squeezing,
antibunching and sub-Poissonian statistics [4, 5], are strictly quantum mechanical in nature.
These states are called nonclassical states. A special feature of the coherent states is that they
are the only pure states which are classical. All the other pure states of the electromagnetic
field are nonclassical.

A generalization of the coherent states was performed byq-deforming the basic
commutation relation [̂a, â†] = 1 [6, 7]. A further generalization is to define states that
are eigenstates of the operatorf (n̂)â,

f (n̂)â|f, α〉 = α|f, α〉 (1)

wheref (n̂) is an operator-valued function of the number operatorn̂ = â†â. These eigenstates
are called nonlinear coherent states (NCS). In the linear limit,f (n̂) = 1, the NCS become the
usual coherent states|α〉. The NCS were introduced, asf -coherent states, in connection with
the study of an oscillator whose frequency depends on its energy [8,9]. A class of NCS can be
realized physically as the stationary states of the centre-of-mass motion of a trapped ion [10]
and exhibit nonclassical features such as squeezing and self-splitting.

Superposition of coherent states gives rise to states with nonclassical properties. An
important case is the superposition of the coherent states|α〉 and |−α〉, where the resultant
states are eigenstates of the operatorâ2 [11]. The symmetric combination is the even coherent
state (ECS),|α,+〉, and its number state expansion is

|α,+〉 = [cosh|α|2]−1/2
∞∑
n=0

α2n

√
(2n)!

|2n〉. (2)
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The antisymmetric combination is the odd coherent state (OCS),|α,−〉, given by

|α,−〉 = [sinh|α|2]−1/2
∞∑
n=0

α2n+1

√
(2n + 1)!

|2n + 1〉. (3)

The ECS has a squeezing effect but no antibunching effect. The OCS has an antibunching
effect but no squeezing effect [12, 13]. Both the ECS and OCS have oscillatory photon
number distribution. These states can be generated by various schemes: propagation
in Kerr medium [14, 15], micromaser cavity experiments [16], quantum nondemolition
experiments [17] and the motion of a trapped ion [18]. The ECS and OCS can be interpreted
as Schr̈odinger cat states for appropriately large values ofα [14].

The notion of the ECS and OCS has been generalized to the case of NCS [19, 20]. The
even and odd nonlinear coherent states (ENCS and ONCS, respectively) are defined as the
eigenstates of the operatorF(n̂)â2, whereF(n̂) is an operator-valued function of the number
operatorn̂. We denote the eigenstates as|α, F 〉, and they satisfy

F(n̂)â2|α, F 〉 = α|α, F 〉 (4)

whereα is complex. The above equation gives rise to the recurrence relation

〈n + 2|α, F 〉 = α 〈n|α, F 〉
F(n)
√
(n + 1)(n + 2)

(5)

for n = 0, 1, 2, 3 . . . , where the functionF(n) is obtained by replacing the number operatorn̂

inF(n̂)by the integern. The complex numbers〈n+2|α, F 〉 (n = 0, 1, 2, . . .)are the expansion
coefficients of the state|α, F 〉 in the harmonic oscillator basis. The above recurrence relation
between the expansion coefficients yields

〈2n|α, F 〉 = αn 〈0|α, F 〉
F(2(n− 1))!!

√
(2n)!

(6)

〈2n + 1|α, F 〉 = αn 〈1|α, F 〉
F(2n− 1)!!

√
(2n + 1)!

(7)

where F(2(n − 1))!! = F(0)F (2)F (4) . . . F (2(n − 1)) and F(2n − 1)!! =
F(1)F (3)F (5) . . . F (2n−1). The functionF(k)!! is set equal to unity if the argumentk is less
than or equal to zero. The above relations yields all the coefficients,n = 1, 2, 3 . . . , in terms
of 〈0|α, F 〉 and 〈1|α, F 〉. The coefficients〈0|α, F 〉 and 〈1|α, F 〉 are fixed by normalizing
the state|α, F 〉. If we choose〈1|α, F 〉 = 0, the state|α, F 〉 involves the superposition of
even number (Fock) states and represents the ENCS. If〈0|α, F 〉 = 0, the state|α, F 〉, the
superposition of odd number states, is the ONCS. We denote the ENCS as|α, F,+〉, and the
ONCS as|α, F,−〉. In the linear limit,F(n̂) = 1, the ENCS and ONCS become the ECS
and the OCS, respectively. Depending on the form ofF(n̂) the ENCS and ONCS may exhibit
many of the nonclassical features. It is interesting to note that the squeezed vacuum and the
squeezed first excited state of the harmonic oscillator can be interpreted as the ENCS and
ONCS, respectively. The squeezed vacuum is the ENCS whenF(n̂) = 1/(1 + â†â), and the
squeezed first excited state is the ONCS withF(n̂) = 1/(2 + â†â). In this paper we show that
a class of ENCS and ONCS can be generated by the interaction of a harmonically trapped,
two-level atom with two externtal laser fields of suitable frequency.

2. Description of the atom–field system

One of the interesting systems in quantum optics is the harmonically trapped and laser-driven
ion wherein the interaction between the ion and the laser has nonlinearn̂-dependence. This
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system has been studied in very many contexts: NCS [10], the vibronic Jaynes–Cummings
interaction [21], the nonlinear Jaynes–Cummings interaction [22], the generation of even
and odd coherent states [18], quantum signatures of chaos [23], quantum nondemolition
measurements [24], quantum logic operations [25], engineering of Hamiltonians [26] and
generation of ampltiude-squared squeezed states [27]. In this paper we show that a class of
ENCS and ONCS can be generated in the centre-of-mass motion of a harmonically trapped
ion via bichromatic laser excitation. We also study the nonclassical properties of the states
produced.

We consider a single ion, having an electronic transition frequencyω and a lower
(second) vibrational sideband with respect to that frequency, trapped in a harmonic potential of
frequencyν. Two laser fields, tuned, repectively, toω and the vibrational sideband transition
frequency, interact with the ion. The Hamiltonian of this system in the optical rotating-wave
approximation can be written as [18]

Ĥ = Ĥ0 + Ĥint(t) (8)

with

Ĥ0 = h̄νâ†â + h̄ωσ̂22. (9)

The free-HamiltonianĤ0 describes the free motion of the internal and external degrees of
freedom and the interaction Hamiltonian̂Hint,

Ĥint(t) = λ[E0e[−i(k0x̂−ωt)] +E1e[−i(k1x̂−(ω−2ν)t)] ]σ̂12 + H.c. (10)

describes the interaction of the ion with the two laser fields. The operatorsσ̂ij (i, j = 1, 2) are
the electronic flip operators corresponding to the transition|j〉 → |i〉, andâ is the annihilation
operator for the vibrational motion of the ion in the harmonic potential. The constantλ is
the electronic coupling matrix element andk0, k1 are the wavevectors of the laser fields. The
operator of the centre-of-mass position of the ion is

x̂ = η

kL
(â + â†) (11)

whereη is the Lamb–Dicke parameter andkL ' k0 ' k1 is the wavevector of the driving laser
field.

In the interaction picture, defined by the unitary transformation exp(− iĤ0t

h̄
), the interaction

Hamiltonian becomes

Ĥ ′int = exp

(
− iĤ0t

h̄

)
Ĥint exp

(
iĤ0t

h̄

)
(12)

= h̄�1 exp(−η2/2)σ̂12

[ ∞∑
k,l=0

(iη)k+l

k!l!
ei(k−l−2)νt â†kâl

+
�0

�1

∞∑
k,l=0

(iη)k+l

k!l!
ei(k−l)νt â†kâl

]
+ H.c. (13)

where�i = λEi
h̄
(i = 1, 2) denotes the Rabi frequency of the two laser fields tuned to the

electronic transition and the second sideband, respectively. In the rotating-wave approximation,
neglecting terms rotating with frequenciesν or greater, the interaction picture Hamiltonian
becomes

Ĥ ′int = h̄�1 exp(−η2/2)σ̂21F̂ + H.c. (14)

with

F̂ =
∞∑
k=0

(iη)2k+2

k!(k + 2)!
â†kâk+2 +

�0

�1

∞∑
k=0

(iη)2k

k!2
â†kâk. (15)
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3. Time evolution of the atom–field system

The time evolution of the system is governed by the master equation for the vibronic density
operatorρ̂,

d

dt
ρ̂ = − i

h̄
[Ĥ ′int, ρ̂] +

0

2
(2σ̂12ρ̂ ′σ̂21− σ̂22ρ̂ − ρ̂σ̂22) (16)

where the second term is introduced to include the effect of spontaneous emission from the
excited elctronic state with energy relaxation rate0, and

ρ̂ ′ = 1
2

∫ 1

−1
dyW(y)eiη(â+â†)y ρ̂e−iη(â+â†)y (17)

accounts for changes in the vibrational energy due to spontaneous emission.W(y) gives the
angular distribution of spontaneous emission. The steady state solutionρ̂s of equation (16) is
obtained by settingddt ρ̂ = 0. The steady state attained depends on the initial state of the system.
It is important to note that the master equation includes the effect of electronic damping while
the vibronic damping is taken to be negligible. This, in turn, would imply that the electronic
part of the steady state solution contains only the ground state. To solve forρ̂s , we make the
ansatz that̂ρs is given by

ρ̂s = |1)|ζ 〉〈ζ |(1| (18)

where|1) is the electronic ground state and|ζ 〉 is the vibrational state of the ion, then the state
|ζ 〉 obeys

F̂ |ζ 〉 = 0. (19)

UsingF̂ given by (15) we get

〈n + 2|ζ 〉 = �0

�1η2

(n + 1)(n + 2)L0
n(η

2)√
(n + 1)(n + 2)L2

n(η
2)
〈n | ζ 〉 (20)

whereLmn is an associated Laguerre polynomial defined by

Lmn (x) =
n∑
l=0

(
n +m
n− l

)
(−x)l
l!

. (21)

The numbers〈n + 2|ζ 〉 are the expansion coefficients for the state|ζ 〉 in the Fock states basis.
Comparing with (5) indicates that the state|ζ 〉 is an ENCS or ONCS with

α = �0

�1η2
(22)

and

F(n) = L2
n(η

2)[(n + 1)(n + 2)L0
n(η

2)]−1. (23)

In the limit η → 0 the functionF(n) becomes1
2 for all n. Hence in the small-η limit the

ENCS and ONCS become the ECS and OCS, respectively.

4. Properties of the ENCS and ONCS

If the initial state of the ion is a combination of even (odd) number states then the state of
the system at later times will only involve a superposition of even (odd) number states as the



Generation of even and odd nonlinear coherent states 2293

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

r

S

Figure 1. UncertaintyS, 〈p2〉 − 〈p〉2, in p as a function ofr for �0
�1
= 0.001 (solid curve) and

�0
�1
= 0.0001 (dashed curve) for the state|α, F,+〉. r represents realη.

master equation (16) contains only even powers ofâ andâ†. If the initial state of the ion is the
vacuum state then the stationary state of the system is given by

|α, F,+〉 = N
∞∑
n=0

αn√
(2n)!F(2n− 2)!!

|2n〉 N−1 =
√√√√ ∞∑

n=0

|α|2n
(2n)!(F (2n− 2)!!)2

(24)

whereα andF(n) are defined by equations (22) and (23), respectively. This state is the ENCS
for the vibrational motion of the centre-of-mass of the ion in the harmonic potential. The
behaviour of the expansion coefficients〈n|α, F,+〉 is highly oscillatory becoming zero for odd
n. This oscillatory behaviour is one of the nonclassical features.

The ECS exhibits squeezing in thep-quadrature which is defined as i(â† − â)/√2. For
the ENCS the expectation values ofâ andâ† become zero and the uncertainty inp is given by

〈(4p̂)2〉 = 〈p̂2〉 − 〈p̂〉2 (25)

= 1
2[1 + 2〈â†â〉 − 2〈â2〉] (26)

where the expansion coefficients of the ENCS in the harmonic oscillator basis are taken to be
real. In figure 1 we have shown the uncertainty inp as a function ofη for the states defined
by (24). From figure 1 it is clear that the uncertainty inp is less than that of the vacuum state
value of 0.5 indicating that the states exhibit squeezing. Asη increases the uncertainty inp
approaches that of the vacuum state. The reason for this behaviour is the following. Asη

increases the occupation number distributionp(n) = |〈n|α, F,+〉|2 starts peaking nearn = 0.
To make this explicit we have shown in figure 2 the occupation number distributionp(n) as a
function ofn for various values ofη.

The occupation number distribution for the ECS is always super-Poissonian, that is
variance inn̂ is larger than its mean. A state is said to exhibit sub-Poissonian statistics if
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Figure 2. Occupation number distributionp(n) as a function ofn for the state|α, F,+〉 for various
η values and�0

�1
= 0.0001. (a) η = 0.008, (b) η = 0.012, (c) η = 0.02, and (d) η = 0.1.

theq parameter [28], defined as

q = 〈n̂
2〉 − 〈n̂〉2
〈n̂〉 − 1 (27)

is negative. Negativeq indicates that the state is nonclassical. For the coherent statesq is zero.
For the ENCS of (24) the ditributionp(n) can have negativeq for suitable values ofη andα.
In figure 3 we have shown the variation ofq with respect to the Lamb–Dicke parameterη for
two different values ofα. It is evident that the ENCS can have features that are absent in the
ECS.

If the initial state of the ion is the first excited state of the harmonic trap then the state of
the system at later times will involve only odd number states. The resultant stationary state of
the system is an ONCS given by

|α, F,−〉 = N
∞∑
n=0

αn√
(2n + 1)!F(2n− 1)!!

|2n + 1〉

N−1 =
√√√√ ∞∑

n=0

|α|2n
(2n + 1)!(F (2n− 1)!!)2

(28)

whereF(n) andα are again defined by equations (23) and (22), respectively. As in the case
of ENCS the behaviour of the occupation number distribution of the ONCS, equation (28), is
oscillatory becoming zero for evenn. The occupation number distributionp(n) of the ONCS
is sub-Poissonian. Figure 4 shows theq parameter as a function ofα for the ONCS of (28).
It is clear that the states are sub-Poissonian. It is interesting to note that theq value for large
valuesη approaches the value of that of the first excited state of the harmonic oscillator. The
reason being that the occupation number distribution becomes concentrated atn = 1 asη
increases.
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Figure 5. Position basis wavefunction corresponding to the state|α, F,+〉 of (24) withα = 2.0.
(a) η = 0.0, (b) η = 0.15, (c) η = 0.30 and (d) η = 0.50. The dashed curves correspond to the
ECS and are the same as case (a).

It is interesting to see how good the ENCS is in approximating the Schrodinger cat states.
We have plotted the wavefunction of the ENCS in figure 5. It is seen that the ENCS is indeed
close to the ECS, which is a cat state. The aprroximation becomes poorer as the value ofη

increases. A similar trend is found in the case of the ONCS too. They approximate the OCS
for small values ofη. So far we have discussed the steady state resulting from the evolution of
an initially pure state. Since the vibronic damping is neglected, the problem of decoherence
does not arise. Nevertheless, it is possible to assume that the system evolves from an initially
mixed state for the vibronic part. In such a case the steady state solution is

ρ̂s = We|1)|α, F,+〉〈α, F,+|(1| +Wo|1)|α, F,−〉〈α, F,−|(1|. (29)

HereWe andWo are weights of the even and odd number states in the initial state.

5. Summary

In conclusion, we have shown that a class of ENCS and ONCS can be generated in the centre-
of-mass motion of a trapped and bichromatically laser driven ion. These ENCS and ONCS are
nonclassical. The ENCS exhibits squeezing while the ONCS exhibits sub-Poissonian statistics.
Both the ENCS and ONCS have an oscillatory occupation number distribution. The ENCS
exhibits sub-Poissonian statistics for suitable values of the parametersη andα while the ECS
is always super-Poissonian. For small values ofη the ENCS and ONCS are very close to the
ECS and OCS, respectively. It is the occurence of the two physical parametersη andα that
helps in manoeuvring the coefficients so that the resultant states have properties very different
from those of the ECS and the OCS.
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